If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-16t=0
a = 5; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·5·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*5}=\frac{0}{10} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*5}=\frac{32}{10} =3+1/5 $
| 31w=-w^2 | | -99=90m-9m^2 | | |2p-3|=17 | | 6g^2=-28-86g | | -7(3-5x)-4x=27+7x | | 256w^2-1=0 | | 5(w+3)-8w=27 | | 68x^2+62x=0 | | 37t^2-28t=0 | | 1+4x/3x=4-2x/5x | | 1+4÷3=4-2÷5x | | 5/9(x+1)=2/3 | | 10=2w-16 | | 2(x+3)-3=9 | | 2m+20=37.50 | | 5m^2-27m=0 | | 3z-29z-10=0 | | 5m+2,000=375 | | -20-10m+7=7 | | 2x^2+58=8x | | k/3–1=1 | | 0.1x=0.05x+20 | | 4u–2=6 | | 20k^2+39k=0 | | 0.05m+20.00=37.50 | | m+20.00=37.50 | | 2(4-2r)=-2(r+5)+8r | | 47g^2-13g=0 | | 3(x+1)-2(2x-5)=6x-3 | | X=2(-3x-11)+8 | | 2m^2+20m+90=7 | | 2x+3(0)=24 |